77 research outputs found

    Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application

    Get PDF
    Simulations based on stencil computations (widely used in geosciences) have been dominated by the MPI+OpenMP programming model paradigm. Little effort has been devoted to experimenting with task-based parallelism in this context. We address this by introducing OpenMP task parallelism into the kernel of an industrial seismic modeling code, Minimod. We observe that even for these highly regular stencil computations, taskified kernels are competitive with traditional OpenMP-augmented loops, and in some experiments tasks even outperform loop parallelism. This promising result sets the stage for more complex computational patterns. Simulations involve more than just the stencil calculation: a collection of kernels is often needed to accomplish the scientific objective (e.g., I/O, boundary conditions). These kernels can often be computed simultaneously; however, implementing this simultaneous computation with traditional programming models is not trivial. The presented approach will be extended to cover simultaneous execution of several kernels, where we expect to fully exploit the benefits of task-based programming

    Entropy generation minimization of fully developed internal flow with constant heat flux

    Get PDF
    This paper uses the entropy generation minimization (EG

    Resting state network mapping in individuals using deep learning

    Get PDF
    INTRODUCTION: Resting state functional MRI (RS-fMRI) is currently used in numerous clinical and research settings. The localization of resting state networks (RSNs) has been utilized in applications ranging from group analysis of neurodegenerative diseases to individual network mapping for pre-surgical planning of tumor resections. Reproducibility of these results has been shown to require a substantial amount of high-quality data, which is not often available in clinical or research settings. METHODS: In this work, we report voxelwise mapping of a standard set of RSNs using a novel deep 3D convolutional neural network (3DCNN). The 3DCNN was trained on publicly available functional MRI data acquired in RESULTS: Our results indicate this method can be applied in individual subjects and is highly resistant to both noisy data and fewer RS-fMRI time points than are typically acquired. Further, our results show core regions within each network that exhibit high average probability and low STD. DISCUSSION: The 3DCNN algorithm can generate individual RSN localization maps, which are necessary for clinical applications. The similarity between 3DCNN mapping results and task-based fMRI responses supports the association of specific functional tasks with RSNs

    Serum CA 19-9 as a Marker of Resectability and Survival in Patients with Potentially Resectable Pancreatic Cancer Treated with Neoadjuvant Chemoradiation

    Get PDF
    Purpose The role of carbohydrate antigen (CA) 19-9 in the evaluation of patients with resectable pancreatic cancer treated with neoadjuvant therapy prior to planned surgical resection is unknown. We evaluated CA 19-9 as a marker of therapeutic response, completion of therapy, and survival in patients enrolled on two recently reported clinical trials. Patients and Methods We analyzed patients with radiographically resectable adenocarcinoma of the head/uncinate process treated on two phase II trials of neoadjuvant chemoradiation. Patients without evidence of disease progression following chemoradiation underwent pancreaticoduodenectomy (PD). CA 19-9 was evaluated in patients with a normal bilirubin level. Results We enrolled 174 patients, and 119 (68%) completed all therapy including PD. Pretreatment CA 19-9 <37 U/ml had a positive predictive value (PPV) for completing PD of 86% but a negative predictive value (NPV) of 33%. Among patients without evidence of disease at last follow-up, the highest pretreatment CA 19-9 was 1,125 U/ml. Restaging CA 19-9 <61 U/ml had a PPV of 93% and a NPV of 28% for completing PD among resectable patients. The area under the receiver-operating characteristics curve of pretreatment and restaging CA 19-9 levels for completing PD was 0.59 and 0.74, respectively. We identified no association between change in CA 19-9 and histopathologic response (P = 0.74). Conclusions Although the PPV of CA 19-9 for completing neoadjuvant therapy and undergoing PD was high, its clinical utility was compromised by a low NPV. Decision-making for patients with resectable PC should remain based on clinical assessment and radiographic staging.PublishedN/

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore